Metabolism of phosphatidylglycerol and bis(monoacylglycero)-phosphate in macrophage subcellular fractions.
نویسندگان
چکیده
Bis(monoacylglycero)phosphate (BMP) is synthesized from exogenous phosphatidylglycerol (PG) by macrophages (Cochran, F. R., Roddick, V. L., Connor, J. R., Thornburg, J. T., and Waite, M. (1987) J. Immunol. 138, 1877-1883). Previous work from our laboratory showed that arachidonic acid in BMP was released by the macrophages upon challenge of the cells with PMA (Cochran, F. R., Connor, J. R., Roddick, V. L., and Waite, M. (1985) Biochem. Biophys. Res. Commun. 130, 800-806). Here we extend those studies using a model cultured cell line of macrophages, RAW 264.7. When PG labeled with 32P- and [3H]glycerol in both moieties was added to the culture medium, 32P/[3H]BMP was synthesized in a time-dependent manner. Fractionation of cell homogenates on a discontinuous sucrose gradient in which the light membranes were floated from dense sucrose showed an enrichment of [3H]BMP in light membrane fractions. The precursor [3H]PG was also found in the light fractions but, relative to the [3H]BMP, was more abundant in the denser membrane fractions. The appearance of [3H]PG and [3H]BMP in the light membrane fraction was time-dependent which suggested that the initial uptake and metabolism of [3H]PG was into the denser membranes. Incubation of the light membranes under conditions that are optimal for the lysosomal phospholipase A1 led to significant metabolism of [3H]PG. Both degradation of [3H]PG to water-soluble compounds and its conversion to acylphosphatidylglycerol occurred while no lyso-PG was detected. On the other hand, little BMP was found to be degraded. From these studies we postulate that in lysosomes acylphosphatidylglycerol is a precursor of BMP and that the previously reported turnover of arachidonic acid by BMP may occur via transacylation rather than hydrolysis.
منابع مشابه
Metabolism of bis(monoacylglycero)phosphate in macrophages.
To further elucidate the role of bis(monoacylglycero)phosphate in lysosomes, its metabolism was assessed by incubation of intact and disrupted macrophages in the presence of labeled lipid precursors. In rabbit pulmonary macrophages bis(monoacylglycero)P accounted for 17.9% and acylphosphatidylglycerol for 2.6% of phospholipid phosphorus. Major fatty acids in bis(monoacylglycero)P were oleic (47...
متن کاملDegradation of bis(monoacylglycero)phosphate by an acid phosphodiesterase in rat liver lysosomes.
Bis(monoacylglycero)phosphate was purified from the livers of chloroquine-treated rats and labeled with tritium by a nonreductive catalytic exchange procedure. The mechanism of its degradation by rat liver lysosomes has been examined. A substantial amount of bis(monoacylglycero)P is degraded to monoglyceride and lysophosphatidic acid by a lysosomal phosphodiesterase having an acid pH optimum. S...
متن کاملAnti-bis(monoacylglycero)phosphate antibody accumulates acetylated LDL-derived cholesterol in cultured macrophages.
Bis(monoacylglycero)phosphate (BMP), also called lysobisphosphatidic acid, is a phospholipid highly enriched in the internal membranes of multivesicular late endosomes, in which it forms specialized lipid domains. It has been suggested that BMP-rich membranes regulate cholesterol transport. Here, we examine the effects of an anti-BMP antibody on cholesterol metabolism and transport in two macro...
متن کاملALCAT1 is a polyglycerophospholipid acyltransferase potently regulated by adenine nucleotide and thyroid status.
Acyl-CoA:lysocardiolipin acyltransferase-1 (ALCAT1) catalyzes acylation of lysocardiolipin back to cardiolipin, an important step in cardiolipin remodeling. The present study reports the catalytic properties of ALCAT1 in vitro and its regulation by thyroid hormone status in mouse liver and heart. Recombinant ALCAT1 expressed in Sf9 cells preferred basic pH conditions and did not require divalen...
متن کاملEffect of lysosomal storage on bis(monoacylglycero)phosphate.
BMP [bis(monoacylglycero)phosphate] is an acidic phospholipid and a structural isomer of PG (phosphatidylglycerol), consisting of lysophosphatidylglycerol with an additional fatty acid esterified to the glycerol head group. It is thought to be synthesized from PG in the endosomal/lysosomal compartment and is found primarily in multivesicular bodies within the same compartment. In the present st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 265 35 شماره
صفحات -
تاریخ انتشار 1990